RhoA activation by hypoxia in pulmonary arterial smooth muscle cells is age and site specific.
نویسندگان
چکیده
Hypoxia induces vasoconstriction of pulmonary arteries through contraction of smooth muscle cells (SMCs). The GTPase RhoA regulates smooth muscle contractility and actin cytoskeletal remodeling through the Rho-associated kinase (ROCK). We previously found that the postnatal fall in pulmonary vascular resistance was associated with actin cytoskeletal remodeling in porcine pulmonary arterial SMCs (PASMCs) in vivo. Here, we investigated the effects of acute and chronic hypoxia on the morphology and RhoA activity of PASMCs from fetal and neonatal piglets. Acute hypoxia enhanced actin stress fiber formation and RhoA activity in both inner and outer medial PASMCs from the fetus but only in the inner medial PASMCs from normal 3-day-old piglets. The increased stress fiber formation was dependent on Rho and ROCK. In outer medial PASMCs from 14-day-old animals, acute hypoxia decreased RhoA activity. Interestingly, outer medial PASMCs from animals exposed to chronic hypoxia had fewer stress fibers associated with a lower basal RhoA activity. Treatment of PASMCs from normal 3-day-old piglets with Rho or ROCK inhibitors for 24 hours induced a similar morphology. Rac activity was not altered by either acute or chronic hypoxia. These data show that acute hypoxia induces RhoA activation only in PASMCs from young animals, whereas chronic hypoxia selectively downregulates RhoA activity in outer medial PASMCs leading to an altered phenotype.
منابع مشابه
Hypoxia modulates the expression of leucine zipper-positive MYPT1 and its interaction with protein kinase G and Rho kinases in pulmonary arterial smooth muscle cells
We have shown previously that acute hypoxia downregulates protein kinase G (PKG) expression and activity in ovine fetal pulmonary vessels and pulmonary arterial smooth muscle cells (SMC). Here, we report that acute hypoxia also reduces the expression of leucinezipper-positive MYPT1 (LZ(+)MYPT1), a subunit of myosin light chain (MLC) phosphatase, in ovine fetal pulmonary arterial SMC. We found t...
متن کاملMURC deficiency in smooth muscle attenuates pulmonary hypertension
Emerging evidence suggests that caveolin-1 (Cav1) is associated with pulmonary arterial hypertension. MURC (also called Cavin-4) is a member of the cavin family, which regulates caveolar formation and functions together with caveolins. Here, we show that hypoxia increased Murc mRNA expression in the mouse lung, and that Murc-null mice exhibited attenuation of hypoxia-induced pulmonary hypertens...
متن کاملRole of RhoB in the regulation of pulmonary endothelial and smooth muscle cell responses to hypoxia.
RATIONALE RhoA and Rho kinase contribute to pulmonary vasoconstriction and vascular remodeling in pulmonary hypertension. RhoB, a protein homologous to RhoA and activated by hypoxia, regulates neoplastic growth and vasoconstriction but its role in the regulation of pulmonary vascular function is not known. OBJECTIVE To determine the role of RhoB in pulmonary endothelial and smooth muscle cell...
متن کاملChronic hypoxia augments depolarization-induced Ca2+ sensitization in pulmonary vascular smooth muscle through superoxide-dependent stimulation of RhoA.
Rho kinase (ROCK)-dependent vasoconstriction has been implicated as a major factor in chronic hypoxia (CH)-induced pulmonary hypertension. This component of pulmonary hypertension is associated with arterial myogenicity and increased vasoreactivity to receptor-mediated agonists and depolarizing stimuli resulting from ROCK-dependent myofilament Ca(2+) sensitization. On the basis of separate line...
متن کاملEP3 receptor deficiency attenuates pulmonary hypertension through suppression of Rho/TGF-β1 signaling.
Pulmonary arterial hypertension (PAH) is commonly associated with chronic hypoxemia in disorders such as chronic obstructive pulmonary disease (COPD). Prostacyclin analogs are widely used in the management of PAH patients; however, clinical efficacy and long-term tolerability of some prostacyclin analogs may be compromised by concomitant activation of the E-prostanoid 3 (EP3) receptor. Here, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 94 10 شماره
صفحات -
تاریخ انتشار 2004